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It is shown that a combination of phase integral approximation and numerical integration 
of the Priifer phase function yields a computationally effective technique for numerical 
solution of Sturm-Liouville eigenvalues. The technique is tested with sample Sturm-Liouville 
systems and compared with other methods. c 1986 Academc Press, Inc. 

1. INTRODUCTION 

Many methods suggested for solving SturnlpLiouville eigenvalue problems 

Y/“(n) + (A -p(x)) Y(x) = 0 on (a, 6) (11 

A, F(a) + A, Y(a) = 0 

B, Y(b) + B, Y(h) = 0 

utilize the logarithmic derivative defined by 

Y(x) 
Y(X) = __ Y(x) 62) 

Differentiating Eq. (2) and using Eq. (1) to eliminate the second derivative term 
yields the first-order Ricatti equation 

y’(x)+ {n-y(x)} +y7(x)=0 (3) 

from which the eigenvalues A. may be determined. tIowever, Eq. (3) cannot be 
integrated by the usual numerical techniques for solving differential equations 
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because y(x) has singular points at the zeros of Y(x) and it is impossible to 
integrate across these points. Among many special methods of solution of Eq. (3) 
[l-9], there are several [ 10-221 which employ either the standard Priifer transfor- 
mation 

Y(x) -= tan 6(x) 
Y(x) 

or the modified Priifer transformation 

$= {;1-p(x)}1’2 tan q(x) 

to associate the singular points of y(x) with 71/2 + MC of the 0(x)- or cp(x)-function. 
Using Eqs. (4) or (.5), the equations corresponding to Eq. (3) 

for 0(x) and 

W(x) = -sin2 0(x) - (A -p(x)) cos2 (3(x) (6) 

q?‘(x)= {A-p(x,p2-- ’ {A-p(x))‘sin 2q(x) 
4 PP(X>l 

for q(x) have no singularities at the zeros of Y(x) and may be integrated along the 
real axis by any general purpose integrator. The eigenvalues may now be obtained 
from one first-order differential equation and the approach is convenient because 
the number of zeros of the desired solution is present explicitly thus making this 
procedure safe from missing eigenvalues. The Priifer methods have been used for 
determining sample Sturm-Liouville eigenvalues by Bailey [ll, 15-J and 
Hargrave [17], who used standard numerical integrators, and by Fix [20], who, 
for (1 -p(x)) > 0, solved Eq. (7), the modified Priifer phase, by successive 
iterations thus obtaining asymptotic eigenvalues for a number of cases. A general 
purpose code SLEIGN for automatic solution of the Sturm-Liouville problem was 
created by Bailey, Gordon, and Shampine [16]. 

The purpose of the present article is twofold. On one hand, it will be shown that, 
in many cases, application of higher-order phase integral methods provides a com- 
putationally efficient way to compute the Priifer phase and Sturm-Liouville eigen- 
values. Numerical integration of Eqs. (6) or (7) may then be replaced by a set of 3- 
to 30-point quadratures to yield eigenvalues of high accuracy. On the other hand, it 
is well known that the phase integral approximation which is not an exact method 
is plagued by its divergence for certain cases. It is shown how the numerical 
integration of the Priifer equations may be used within the phase integral method. 
Some of those cases, classical turning points, can often be handled by so-called con- 
nection formulae while for some other, more complicated cases there are correction 
functions to account for the divergence of the phase integral method. However, 
such functions are known only for a very few cases. In this work, numerical 
integration of the Prtifer phase function is used to connect phase integral 
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approximations across regions in which they are too inaccurate or perha 
valid at all. 

In the following, Section 2 presents the higher-order phase i~tcgra~ 
approximations to the Priifer phase and Section 3 reviews the connection formulae 
required for determination of Sturm-Liouville eigenvalues. The use and usefulness 
of the phase integral methods are then tested by computing sample Stun-~io~vi~~e 
eigenvalues in Section 4. Section 5 gives practical recommendations for using the 
phase integral methods and discusses their relation to the Priifer equations. 

2. THE PHASE INTEGRAL APPROXIMATIONS TO THE PROOFER PHASE 

The phase integral approximations are a solution of the Ricatti equation, Eq. (31, 
in the complex plane by successive approximations yielding in the symmetric ase 
integral approximation [23, 241 

Y(z) = (q(z))-‘/’ exp( ) i w(z)) (81 

where 

w(z) = s; q(z) dz (91 

and 
q(z) = q’yz) + qyz) + q(S)(z) + ” 

with the first few functions qci)(z) defined by [26] 

q(l)(z) = {A -p(z)} 1’2, 

q’yz) = f 
0 

(p”(z)/{lb-p(z)}3’* 

(no) 

(11) 

+ ; (P’(z))2/{~~-P(z)}s’2), 0 
4’5’(2) = - (&)(p.“(z),(L -p(z)y + ((~)!P%V 

+ 7p’(z)p”‘(Z) 
11 

jA-p(z))7’2 

+ F (p’(z))2P”(z)l(~“-P(z)~9’2 ( > 
+ g (p’(z))4/(~-P(z)r11’2) ( > (63) 

where primes denote differentiation with respect to z. 
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From the phase integral approximations to the solution Y(z), the corresponding 
approximations to the Prtifer phase on the real axis may be obtained. For 
{;I. -p(z)} < 0, the functions q(x) are purely imaginary and the two linearly 
independent solutions, Eq. (S), are real, exponentially increasing and decreasing 
solutions. For Sturm-Liouville eigenvalue problems in which the boundary point is 
in the region where {;1 -p(x) > is large and negative, only the negative exponential 
is acceptable and for those cases 

(3(x) = arctan ( 
1 4’(x) ----iq(x) 
2 4(x) 1 

In a region where (3, -p(x)} > 0, the function q(x) is real on the real axis and the 
two linearly independent phase integral solutions are complex. A suitable linear 
combination which is real on the real axis is 

Y(x) = 2(q(x))-“2 cos(w(x)) (15) 

and the corresponding Priifer phase is 

0(x) = arctan ( 
14’(x) - - - + q(x) tan(w(x)) . 
2 4(x) 1 

The validity and accuracy of the phase integral approximations are discussed in 
[23] and numerical tests on the real axis may be found in [27]. For numerical pur- 
poses it is important to realize that phase integral approximations are asymptotic. 
Their accuracy cannot be increased arbitrarily but it can be estimated by com- 
puting the various-order contributions to q(z) and w(z), Eqs. (10) and (9), respec- 
tively, and investigating their behaviour. The lower limit of integration in w(z), 
Eq. (9), is often chosen to be a zero of (/z-p(z)}. Definitions of the integration 
paths and evaluation of the various-order contributions to w(z) in that case are 
described in [23,28, 291. If (2 -p(z)} > 0, the lower limit of integration may be 
chosen such that the integrands of w(z) are well behaved and in that case virtually 
any standard quadrature will do. 

3. THE CONNECTION FORMULAE 

In a region where 1 il -p(x) 1 is very small, neither one of the approximations, 
Eqs. (14) and (15), is valid; the whole phase integral expansion is divergent. 
However, for determining eigenvalues, accurate solutions are required only at the 
boundary points and, provided the boundary point is not too close to such a 
region, the situation may be handled by so-called connection formulae. For isolated 
simple zero of (2 -p(x)}, there is a well known connection formula [30] which 
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connects a solution in the region where (/z -p(x) > < 0 to a solution of Eq. ( 15) in 
e region where (2” -p(x)} > 0. In terms of the Priifer phase, the connection is 

e other, more complicated, connection formulae, only the case of WQ 
adjacent zeros of {j& -p(z)} with (1 -p(z)) > 0 between them has been solved in 
higher-order approximations. In [31], by means of comparison equation metho 
a connection formula for phase integral solutions on opposite sides of a region 
two adjacent zeros of {&-P(Z)} with a parabolic shape in that region was 
obtained. The connection formula involves comparison equation correction 
functions in terms of phase integrals between the two zeros in question. 

It is obvious that, apart from a simple isolated zero which essentially only 
requires the inclusion of the constant 7c/4 to the basic Eq. (I$), use of the connec- 
tion formulae may become rather complex. In the present work therefore, direct 
numerical integration of Eq. (6) is suggested as an alternative for cormect 
phase integral solutions across regions in which the phase integral a 
cannot be used. 

4. TESTS 

The approximations and expressions above were tested by corn~~t~~~ 
Sturm-Liouville eigenvalues for sample problems and comparing the accuracy and 
efficiency of the present technique with previous calculations by other aut 
first test case was Mathieu’s equation [ 15, 171 

ly’(x) + (A - 2h cos(2x)) $(x) = 0 Bnsl 

which is a regular Sturm-Liouville system on the interval [0, 7&T]. 
the phase integral calculation is presente for the first few: 3, < 2 
A $2h, eigenvalues and compared with 

WhQ 
t e values computed by 

[17], computed the two lowest eigenvalues of even ei~e~~~~ct~Q~§ 

$‘(O) = $/‘(7q2) = 0 

for several h-values by 50- and loo-step numerical integration of Eqs. (6) or (7). 
The phase integral eigenvalue condition for this case [32j is obtained by using 

the connection formula at the zero of (A - 2h cos(2x)) to connect the ex~~~e~~~~~~ 
decreasing solution near n/2 to the solution of Eq. (15) valid near 0, yielding 

B - .I nr 
q(z)dz= I%+; ) 

c > 
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TABLE I 

Lowest Eigenvalues of Mathieu’s Equation Corresponding to Even Eigenfunctions: 
(a) 50-Step Numerical Integration, (b) lOO-Step Numerical Integration, 

(c) 5th-Order Phase Integral, and (d) 6 Decimal Exact 

h (a) (b) (cl (d) 

5 - 5.800046 - 5.800046 - 5.790010 - 5.800046 
10 - 13.936980 - 13.936980 - 13.936536 - 13.936980 
15 -22.513037 -22.513038 -22.512997 -22.513038 
20 -31.313419 -31.313391 -31.313383 -31.313390 
25 -40.256785 -40.256783 -40.256777 -40.256780 

The integration path r and details of the evaluation of the integrals are described in 
[28,29]. A rapid second-order iteration to find 1, may be established because the 
partial derivative of (m + 4) with respect to 1 [33] 

a@++) 1 adz)& --3r- -n I- ix s- (21) 

obtained from Eqs. (1 l)-( 13), consists of a set of integrals very similar to those of 
Eq. (20) and may therefore be evaluated at each trial value of 1, for very little extra 
computational cost. In Table I, the fifth-order phase integral eigenvalues are com- 
pared with the exact ones and those computed in [17]. It is seen that the general 
trends in accuracy with the numerical integration and the phase integral integration 
are complementary. The former is more efficient for small h-values whilst the latter 
improves with increasing h. 

The same behaviour may be seen for high eigenvalues. Table II presents some 
higher eigenvalues of odd Mathieu eigenfunctions calculated with the boundary 
conditions 

W) = $(71/2) = 0 (22) 

TABLE II 

Higher Eigenvalues of Mathieu’s Equation Corresponding to Odd Eigenfunctions h = 1: 
a) Numerical Integration, (b) lst-Order Phase Integral, (c) 3rd-Order Phase Integral, 

(d) 5th-Order Phase Integral, and (e) Two-Term Asymptotic Series 

111 (a) (b) (c) Cd) (e) 

5 100.005050675 100.0050002 100.00505017 100.005050670 100.005 
10 400.001253135 400.0012500 400.001253128 100.001253135 400.00125 
15 900.00055617 900.00055556 900.000556173 900.000556174 900.0005556 

100 40000.0000 40000.0000125 40000.0000125 40000.0000125 40000.0000125 
loo0 4000000.000000 4000000.000000 400000.000000 4000000.000000 400000.000000 
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by numerical integration [17], by phase integral method, and by a~aIyt~~ 
asymptotic series. The phase integral eigenvalue condition for t 
obtained directly from Eq. (16) which is valid on the whole interval CO, n/2], 
yielding 

1 aI2 - s q(x) dx = m 
710 

(23) 

and a formula analogous to Eq. (21) for rapid convergence to the 
value. 

It is seen in Table II that in the numerical integration of column (a), for a given 
number of integration steps, the accuracy is very go for ,the lower eige~vaI~es 
and then levels out for higher eigenvalues while the racy of the phase integral 
calculation improves with increasing m. Comparing with the asymptotic analytic 
methods, it should be noted that the asymptotic series may actually obtained by 
expanding the integrals in Eq. (23). For moderate values of A, howev many terms 
may be required for high accuracy and the direct integration of Eq. (23) is more 
efficient. Finally, to demonstrate the efliciency of the phase integral calculation, 
Table III lists the number of function evaluations per trial energy needed in stan- 
dard numerical integration and in slightly modified numerical integration (see [IS] 
for those definitions) compared with phase integral calculations. Note that for lev 
m 3 100, the first-order phase integral calculation is sufficiently accurate a 
therefore, for those levels, the function to be evaluated is the same in all three 
columns of Table III. 

The second test case is the Lame equation 

$“(x) + (o-2. - n(n + 1) k2sn2x) I)(X) = 0 

TABLE III 

Number of Function Evaluations N per Integration Required 
by (a) Standard Numerical Integration, 

(b) Improved Numerical Integration [!5], and 
(c) Phase Integral Calculation at the Eigenlevels of Table II 

(N) 

m 

5 
10 

100 
1000 

(a) (b) 

1084 128 
2812 146 

48719 128 

(cl 

15 
15 
I 
3 
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where sylx is the Jacobian elliptic function of modulus k, and the solutions of 
Eq. (24) are the Lame polynomials if n is an integer. Four possible types of boun- 
dary conditions are considered, 

$(O) = $(K) = 0, (25) 

HO) = ti’(K) = 0, (26) 

V(O) = $(a = 0, (27) 

l)‘(O) = l)‘(K) = 0, (28) 

where K is complete elliptic integral of the first kind. The phase integral eigenvalue 
condition for this problem covering all the four cases is very similar to that of 
Mathieu’s equation [32, 341 

rnx = a + 0 + arctan(exp(B)) (29) 

where a and /I are the sums of various-order contributions to the phase integrals on 
the (A -p(x)} > 0 and (A -p(x)} < 0 range, respectively, and g is the sum of 
various-order comparison equation correction functions [ 3 11. Equation (29) yields 
Eqs. (20) and (23) considered with the Mathieu’s equation as limiting cases for low 
and high eigenvalues but in order to compute all eigenvalues for a given n, Eq. (29) 
in needed. Note, however, that the eigenvalues A > n(n + 1) may be obtained from 
the symmetry relation for the eigenvalues [35] 

A,(k2) = (n(n + 1)) - /ZNPrn(/Y2), (30) 

where N = 2n + 1 and k’ is the complementary modulus defined as 

k’ = (1 - k2)li2. (311 

The computation of the phase integrals requires values of elliptic functions sax 
and its derivatives on the range [0, K]. To avoid extensive calculations of various 
elliptic functions, an array of sn2x-values was first created and its values and 
derivatives required in the phase integral calculations were computed by local 
polynomial interpolation by using the computer program of [36], which was also 
used for evaluating the phase integrals from this numerical data. 

For large values of IZ, Hargrave [17] reports that the eigenvalues obtained by 
loo-step numerical integration are accurate to ten significant figures. The phase 
integral calculations of the present work yield for k 2 z 0.5 results which are accurate 
to six significant figures at n = 10, to seven significant figures at n = 20, and so on 
for much less computational work than with numerical integration. For low n- 
values, on the other hand, the phase integral method is less accurate and numerical 
integration is to be preferred. 

In some exceptional cases, Eq. (29) may be numerically unstable. For k2 cz 0.5, 
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there is one level almost at /z = n(n -I- I), which in Eq. (29) im lies that /I is very 
small but M. and 0 extremely large, which leads to numeri 1 aif~~~lties. This 
situation may be remedied by a combination of numerical integration and phase 
integral method. Using Eq. (16) with lower limit of i~t~gra~~o~ at K a airect 
numerical integration of the equation from 0 with fitting in the mid 
eigenvalues also for this case. 

The final test case is the eigenvalues of the singular Sturm-Liouvil 

$“(X) + { /1- x4) $(x) = 0 

with the boundary conditions 

I/?(-a)=$(co)=O. (33) 

For this problem, there is a region where (1. -x”> is positive and two regions i 
which (A - x4 > is negative. For (2 -x4) < 0, Eq. (14) is valid, rovided n” is not too 
close to a turning point, but for (I.-x”> > 0 inspection of various-order con- 
tributions to w(z) shows that Eq. (16) yields accurate results only for higher 
eigenlevels. For the lowest levels, m =O-3, therefore, a transition to numerical 
integration is required in the {A - x4> < 0 regions at x = -t 3 . .A1!4, say, while br 
higher levels application of the connection formula, Eq. [ 171, at the two turning 
points yields the eigenvalue condition 

TABLE IV 

The Six-Figure Eigenvalues /1, of the Problem 
Eq. (35) for WI=&10, 20, 30, 50, 100 

0 1.06036 
1 3.79967 
2 1.45570 
3 11.6447 
4 16.2618 
5 21.2384 
6 26.5285 
7 32.0936 
8 37.9230 
9 43.9812 

10 50,2563 
20 122.605 
30 208.232 
50 407.874 

100 1020.99 
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which by symmetry is the same as Eq. (20) and employs the same rapid iteration 
for determining the eigenvalues. Table IV presents a selection of eigenvalues for this 
problem computed for m = O-3 by a combination of phase integral method and 
numerical integration and by Eq. (34) f or m 24. As before in the phase integral 
calculations, the accuracy of the eigenvalues increases with increasing m while the 
computational cost per eigenvalue decreases. 

5. CONCLUSIONS 

It has been shown by numerical examples that a combination of phase integral 
approximations and numerical integration of the Priifer phase function equation 
yields a computationally effective technique for numerical solution of 
Sturm-Liouville eigenvalues. The two methods are complementary in the sense that 
in the situations for which the phase integral method is very well applicable, high 
eigenlevels in particular, numerical integration becomes expensive and for cases in 
which the phase integral method is less accurate or cannot be used at all, numerical 
integration is typically very efficient. If the phase integral approximation is valid 
and accurate enough, it is computationally less expensive than numerical 
integration, but it is an asymptotic technique which implies that its accuracy is 
largely determined by the problem and cannot be arbitrarily increased by adding 
higher-order terms in the approximation. Therefore, for very high accuracy, 
numerical integration may be required to obtain the desired accuracy. However, 
experience has shown that in most physical problems, while the traditional lirst- 
order JWKB-method usually is too inaccurate, application of third- or fifth-order 
phase integral approximation yields the best compromise between accuracy and the 
computational cost. 

In some cases the phase integral method fails to yield accurate eigenvalues. 
However, this breakdown of the approximation is very often local; it takes place 
only for some eigenvalues and on a narrow region of the argument and does not 
affect the accuracy of the approximation elsewhere. In the phase integral descrip- 
tion, correction functions have been introduced but they are known only for a few 
cases. It has been shown in the present work that a flexible transition between the 
phase integral approximation and numerical integration yields a general way of 
treating these cases. 

In the region for which the phase integral method is recommended in this work, 
modified Priifer substitution has been used in numerical integration. These two 
methods are very closely related and the phase integral method corresponds to 
solving the modified Priifer phase function equation by the method of successive 
approximations. 

For many problems, analytic asymptotic formulae for the eigenvalues may be 
derived from the phase integral eigenvalue conditions. However, those formulae are 
specific to the problem considered while the phase integral eigenvalue conditions 
are more general. For numerical purposes, asymptotic formulae offer no real benefit 
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because the phase integral calculations for high levels are extremely fast, an 
moderate eigenvalues for which the asymptotic series may require many terms for 
sufficient accuracy, phase integral methods typically yield high accuracy for low 
computational cost. 
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